条件に合う6桁の整数は?(今年 2018年 聖光学院 中学)
----------------------------------------------------
1から6までの数字が書かれた6枚のカード
を並べかえて、
6桁の整数をつくります。
つくった6桁の整数の上から2桁が2の倍数、
上か
ら3桁が3の倍数、
上から4桁が4の倍数、
上から5桁が5の倍数、
上から6桁が6の倍数になるものを、すべて答えなさい。
----------------------------------------------------
----------------------------------------------------
2~6の倍数判定法は次の通りです。
2の倍数
1位の数が、0、2、4、6、8であれば、その数字は2の倍数である。
3の倍数
各位の数字の和が3で割り切れれば、その数字は3の倍数である。
4の倍数
下二桁が4で割り切れれば、その数字は4の倍数である。
5の倍数
1の位の数が、0、5であれば、その数字は5の倍数である。
6の倍数
2の倍数かつ3の倍数であれば、6の倍数である。
1+2+3+4+5+6=21より、
どのようにならべても3の倍数になるので、
下1桁は2、4、6のいずれかになり、
左から2つ目の数も2、4、6のいずれかになります。
□□□□5□ と、5の位置は決まるので、
□2□□5□ の場合、
□2165□・・・・・①
□2365□・・・・・②
□2645□・・・・・③
が考えられますが、
③は下1桁に入る数がないので、不適当、
321654・・・・・①
123654・・・・・②
が決まります。
□4□□5□ の場合、
□4125□
□4165□
□4325□
□4365□
が考えられますが、
下1桁に残る偶数を入れると、
341256
341652
143256
143652
いずれも上から3桁が3の倍数にならないので不適当
□6□□5□ の場合
□6125□
□6245□
□6325□
が考えられますが、
361254→上から3桁が3の倍数にならない。
□6245□→下1桁に入る偶数がない。
163254→上から3桁が3の倍数にならない。
いずれも不適当で、
321654
123654
の2数だけになります。
----------------------------------------------------
----------------------------------------------------
↓こちらファミリーページにもどうぞ!
最近のコメント