目次

立体図形

2019年8月28日 (水)

底面が動く水槽問題(慶應義塾湘南藤沢中等部 2018年)

----------------------------------------------------

----------------------------------------------------

底面を水平のまま動かせる水そうがあります。

図のように最初の底面の位置は深さ60cmのAの ところにあります。

ここに水を一定の量ずつ入れ始めると同時に

毎分2cmの速さで底面を上げていったところ、

3分後の水面の高さは Aから8cm になりました。

(1) 水は毎分何しℓずつ入りますか。

(2) 水そうがいっぱいになるのは、水を入れ始めてから 何分後ですか。

(3) 水を入れ始めてから口分後に、底面の上がる速さを1/3にして、

  水を入れる量を2倍にした ところ、

  水を入れ始めてから 24分後に水そうがいっぱいになりました。

  口に入る数を求めなさい。

11171

Paper

 

----------------------------------------------------

----------------------------------------------------

解法のヒント

底面は毎分2cmで上がりますから、

3分では、2×3=6cm上がります。

水は底面が動いても動かなくても、

底面上の水面の高さは毎分一定の量で増えていきます。

11173

3分後水面の高さはAから8cmの高さになったので、

底面から水面までは、8-6=2cm

Pce022s

 

解法例

(1)

40×25×2=2000立方cm=2ℓ

1分間に、2÷3=2/3ℓ

(2)

水は1分間に底面から、

2/3ℓ÷(40cm×25cm)=2/3cm上昇します。

△分で60cmになるとすると、

2×△+2/3×△=60

8/3×△=60

△=22.5分

(3)

□分間は、水面は1分間に

2+2/3=8/3cm上がります。

□分後~24分の間は、

2×1/3+2×2/3=2/3+4/3=6/3cm上がります。

下のようにの面積図にしてみると、

11172

1分間に8/3cmのままなら24分間で64cmなので、

白い部分の面積は4ということになり、

PQ=8/3-6/3=2/3 より、

QRの長さは、

4÷2/3=6となるので、

□=24-6=18分です。

6082

 

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2019年6月30日 (日)

切断面の形は?(開成中学 2019年)

----------------------------------------------------

----------------------------------------------------

次の図のような直方体 ABCD-EFGH があります。

また、辺 CD、EF、GC 上にそれぞれ点 P、Q、R があり、

DP=8cm、PC=12cm、EQ=4cm、CR=9cmが成り立っています。

2021

 

 

3点P、Q、R を通る平面でこの直方体を切断し、

切断したときにできる切り口の図形をXとします。

図形 X を前から見ると(面 ABFE に垂直な方向から見ると)、

面積が228㎠の図形に見えます。

図形X を上から見ると(面 ABCD に垂直な方向から見ると)、

面積が 266㎠の図形に見えます。

2022

 

 

このとき、次の問いに答えなさい。

(1) 図形 X は何角形ですか。

(2) 直方体の高さ(辺 AE の長さ)は何cm ですか。

(3) 直方体の奥行き(辺 AD の長さ)は何cm ですか。

----------------------------------------------------

----------------------------------------------------

解法例

106

(1)切り口は図のような六角形です。

2023

(2)前から見ると下の図のように見えます。

2027

TQとPRは平行なので、

△TEQと△RCPは相似になり、

TE=4×3/4=3cm

六角形ATQFRP=228㎠なので、

AE=□cmとすると、

20×□-(4×3÷2+12×9÷2)=228

20×□-60=228

20×□=288

AE=□=14.4cm

(3)下の図のように、直方体の上に三角すいを考えると

2025

△TEQと△ODPは相似なので、

OD=8×3/4=6cm

△ODSと△TASも相似なので、

OD:TA=6:(14.4-3)=6:11.4=10:19より、

DS:SA=10:19

2026

上から見ると、△緑どうしも相似になるので、

DP:FQ=8:16=1:2より、

DS:BU=10:20

20×(⑩+⑲)-(8×⑩÷2+16×⑳÷2)=266

580まる-200まる=266

380まる=266

①=0.7

AD=29まる=0.7×29=20.3cm

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2019年6月20日 (木)

長さと表面積は?(神戸女学院中学部 2019年 )

----------------------------------------------------

----------------------------------------------------

図1のような直方体を上下はそのままで4個はり合わせて、

図2のような立体を作ります。

図1の直方体4個分の表面積の和と図2の立体の表面積の比は

5:4となりました。

図1

1301

図2

1302

 

 

(1)「あ」の長さは何cmですか。

(2)図2の立体を2個作ってぴったり重ね、

上の立体を点Pを中心に45°回転させて、図3のような立 体を作ります。

このとき、図3の立体の表面積を求めなさい。

図3

1303

 

----------------------------------------------------

----------------------------------------------------

解法例

109

(1)図1の立体の表面積は、

3×6×2+3×あ×2+あ×6×2

=18×あ+36

その4個分は、

72×あ+144

図2の立体は、

3×あ×8=24×あ だけ表面積が少なくなっているので、

(72×あ+144):(48×あ+144)=5:4

4×(72×あ+144)=5×(48×あ+144)

288×あ+576=240×あ+720

48×あ=144

あ=3cm

(2)

1304

.図のように上下の立体が重なっている部分の面積は、

3×3÷2×2=.9㎠

この重なった部分は8個あるので、

9×8=72㎠

図2の立体2つ分の表面積は、

2×(48×3+144)=576㎠

図3の立体の表面積は

576-72=504㎠

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2019年6月 5日 (水)

立方体の展開図は?(女子学院中学 2019年)

----------------------------------------------------

----------------------------------------------------

図1のように,厚紙に同じ大きさの 12 個の正方形をかいて,

1 ~ 12 の数を入れました。

この厚紙の必要のない部分を切り取って立方体の展開図を作ります。

Bandicam-20190605-094507181

(1)[12]を使ってできる展開図は全部で何通りですか。

(2) 展開図にかかれている数の和が一番小さいものを1つ作ります。

使う数を図2に〇で囲みなさい。

Bandicam-20190605-094518652

----------------------------------------------------

----------------------------------------------------

解法例

立方体の展開図は11種類あります。

③は横幅が5つになるので除外して、10種類で考えます。

Rippotai_tenkaizu12

(1)

⑧と⑪は12を含むことができないので、8通りですが、

⑨は11を含む展開図と、11を含まない展開図の

2通りできるので、

全部で9通りの展開図ができます。

(2)

Bandicam-20190605-101332515

または、

Bandicam-20190605-101346774

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

が34で最小になります。

2019年5月29日 (水)

立方体の切り口は?(本郷中学 2018年)

----------------------------------------------------

図のような1辺の長さが3cmの立方体があります。

点Iは辺GH上、点JはDH上にあり、 GI=DJ=1cmです。

10301

 

この立方体を、3点A、F、Jを通る平面で切ったとき、

点Eを含む立体 をKとします。

このとき、次の問いに答えなさい。

(1)立体Kの表面のうち、

  もとの立方体の表面に 含まれる部分の面積は何㎠ですか。

(2)この立方体の展開図は下図のようになります 。

10304

 

  (1)で求めた部分を色部分で表します。

   残りの部分に色をつけてください。

(3)立体Kの体積は何立方cmですか。

----------------------------------------------------

----------------------------------------------------

解法例

立方体の切り口は図のようになります。

10302_2

(1)

左面→3×3÷2=4.5㎠

右面→2×2÷2=2㎠

奥の面→9-1×3÷2=7.5㎠

下面→9-1×3÷2=7.5㎠

求める面積=7.5×2+4.5+2=21.5㎠

(2)

立方体の一番離れている頂点どうしは、

展開図では2つ並んだ正方形の対角線の位置に来ます。

したがって、各頂点は下の図のようになります。

10305

切り口を線で結ぶと、(1)の面積は図のようになります。

10306

(3)

AJとFIとEHを延長すると1点で交わります。

10303

大きな三角すいから立方体からはみ出た三角すいを引きます。

3×3÷2×9÷3-2×2÷2×6÷3

13.5-4

=9.5立方cm

6082

 

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2019年4月22日 (月)

水の量は何立方cm?(今年 2019年 慶應義塾湘南藤沢中等部)

----------------------------------------------------

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

続きを読む "水の量は何立方cm?(今年 2019年 慶應義塾湘南藤沢中等部)" »

2019年2月11日 (月)

切断面の形は?(今年 2019年 開成中学)

----------------------------------------------------

次の図のような直方体 ABCD-EFGH があります。

また、辺 CD、EF、GC 上にそれぞれ点 P、Q、R があり、

DP=8cm、PC=12cm、EQ=4cm、CR=9cmが成り立っています。

2021

 

3点P、Q、R を通る平面でこの直方体を切断し、

切断したときにできる切り口の図形をXとします。

図形 X を前から見ると(面 ABFE に垂直な方向から見ると)、

面積が228㎠の図形に見えます。

図形X を上から見ると(面 ABCD に垂直な方向から見ると)、

面積が 266㎠の図形に見えます。

2022

 

このとき、次の問いに答えなさい。

(1) 図形 X は何角形ですか。

(2) 直方体の高さ(辺 AE の長さ)は何cm ですか。

(3) 直方体の奥行き(辺 AD の長さ)は何cm ですか。

----------------------------------------------------

----------------------------------------------------

解法例

106

(1)切り口は図のような六角形です。

2023

(2)前から見ると下の図のように見えます。

2027

TQとPRは平行なので、

△TEQと△RCPは相似になり、

TE=4×3/4=3cm

六角形ATQFRP=228㎠なので、

AE=□cmとすると、

20×□-(4×3÷2+12×9÷2)=228

20×□-60=228

20×□=288

AE=□=14.4cm

(3)下の図のように、直方体の上に三角すいを考えると

2025

△TEQと△ODPは相似なので、

OD=8×3/4=6cm

△ODSと△TASも相似なので、

OD:TA=6:(14.4-3)=6:11.4=10:19より、

DS:SA=10:19

2026

上から見ると、△緑どうしも相似になるので、

DP:FQ=8:16=1:2より、

DS:BU=10:20

20×(⑩+⑲)-(8×⑩÷2+16×⑳÷2)=266

580まる-200まる=266

380まる=266

①=0.7

AD=29まる=0.7×29=20.3cm

 

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ!  ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2018年12月 4日 (火)

長さ比、面積比は?(今年 2018年 吉祥女子中学)

----------------------------------------------------

図の四角柱は、底面が1辺5cmのひし形で、高さは5cmです。

点Mは 辺CG を二等分する点、

点Pは三角形AFHと直線CEの交わる点、

点Q は三角形AFH と直線MEの交わる点、

点Rは3点A、P、Qを通る直線と直線FHの交わる点です。

FHの長さが6cmで、ひし形ABCDの面積が24㎠のとき、

後の問いに答えなさい。

12041

 

(1) ACの長さは何cmですか。

(2) FR:RH をもっとも簡単な整数の比で答えなさい。

(3) AP:PR をもっとも簡単な整数の比で答えなさい。

(4) AQ:QR をもっとも簡単な整数の比で答えなさい。

(5) AP:PQ:QR をもっとも簡単な整数の比で答えなさい。

(6) 三角形EPQ の面積は何㎠ですか。

Santa3

----------------------------------------------------

----------------------------------------------------

解法のヒント

Honeycam_20181204_081552

6082

----------------------------------------------------

----------------------------------------------------

解法例

(1)ひし形の面積は、対角線×対角線÷2なので、

AC×6÷2=24 より、

AC=24×2÷6=8cm

(2)PもQも図のように対角線ACを含む

平面AEGC上にあるので、Rも同一平面上にあります。

12042

Rは対角線FHの中点になり、

FR:RH=1:1

(3)BFとDHが重なる方向から見ると、

12043

△AEPと△SRPは相似で相似比は2:1なので、

AP:PR=2:1

(4)TはSRの中点なので、

△AEQと△TRQは相似で相似比は4:1

AQ:QR=4:1

(5)AP:PRとAQ:QRの比の合計をそろえると、

 AP:PR=2:1=10:5

AQ:QR=4:1=12:3 より、

PQ=5-3=2

AP:PQ:QR=10:2:3

(6)

△EAPと△EPQと△EQRの面積比は10:2:3

△EARの面積=5×(8÷2)÷2=10㎠ より、

△EPQの面積=10×2/15=4/3㎠

6083

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ!  ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2018年11月17日 (土)

底面が動く水槽問題(今年 2018年 慶應義塾湘南藤沢中等部)

----------------------------------------------------

底面を水平のまま動かせる水そうがあります。

図のように最初の底面の位置は深さ60cmのAの ところにあります。

ここに水を一定の量ずつ入れ始めると同時に

毎分2cmの速さで底面を上げていったところ、

3分後の水面の高さは Aから8cm になりました。

(1) 水は毎分何しℓずつ入りますか。

(2) 水そうがいっぱいになるのは、水を入れ始めてから 何分後ですか。

 

(3) 水を入れ始めてから口分後に、底面の上がる速さを1/3にして、

  水を入れる量を2倍にした ところ、

  水を入れ始めてから 24分後に水そうがいっぱいになりました。

  口に入る数を求めなさい。

11171

Paper

----------------------------------------------------

----------------------------------------------------

解法のヒント

底面は毎分2cmで上がりますから、

3分では、2×3=6cm上がります。

水は底面が動いても動かなくても、

底面上の水面の高さは毎分一定の量で増えていきます。

11173

3分後水面の高さはAから8cmの高さになったので、

底面から水面までは、8-6=2cm

Pce022s

----------------------------------------------------

----------------------------------------------------

解法例

(1)

40×25×2=2000立方cm=2ℓ

1分間に、2÷3=2/3ℓ

(2)

水は1分間に底面から、

2/3ℓ÷(40cm×25cm)=2/3cm上昇します。

△分で60cmになるとすると、

2×△+2/3×△=60

8/3×△=60

△=22.5分

(3)

□分間は、水面は1分間に

2+2/3=8/3cm上がります。

□分後~24分の間は、

2×1/3+2×2/3=2/3+4/3=6/3cm上がります。

下のようにの面積図にしてみると、

11172

1分間に8/3cmのままなら24分間で64cmなので、

白い部分の面積は4ということになり、

PQ=8/3-6/3=2/3 より、

QRの長さは、

4÷2/3=6となるので、

□=24-6=18分です。

6082

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2018年11月14日 (水)

切られる立方体はいくつ?(筑波大学附属中学 2017年)

----------------------------------------------------

同じ大きさの立方体を、

図のように64個積み重ねて大きな立方体をつくり、

その立方体を3つの頂点A、B、Cを通る平面で切ります。

その平面で切られる立方体の個数はいくつですか。


5281

Paper
 

----------------------------------------------------

----------------------------------------------------

解法のヒント

一番上の段の途中では、

図のように7個の立方体が切断されることがわかります。

Bandicam_20170528_093945823

----------------------------------------------------

----------------------------------------------------

解法例

2段目では5個

Bandicam_20170528_094009324

3段目では3個

Bandicam_20170528_094022416

一番下の段では、1個

Bandicam_20170528_094035434

合計、7+5+3+1=16個 です。

6082

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ!  ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

より以前の記事一覧

スポンサードリンク

2022年8月
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31      

不思議な休憩室