目次

算数

2019年10月 9日 (水)

色部分の面積は?(浦和明の星女子中学  2019年)

----------------------------------------------------

----------------------------------------------------

下の図は、大きな半円と小さな円と直線を組み合わせたもの です。

図の色部分の面積を求めなさい。

ただし、円周率は3.14 とします。

1151

102

----------------------------------------------------

----------------------------------------------------

 

図の黄色部分は二等辺直角三角形で、

赤い部分は小さい円の3/4になります。

1152

緑部分の面積は、

半径4cm、中心角135°のおうぎ形から、

黄と赤部分を引いて求めます。

4×4×3.14×135/360-2×2×3.14×3/4

=6×3.14-3×3.14

=3×3.14

=9.42㎠

9.42-2×2÷2=7.42㎠

104

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

 

----------------------------------------------------

2019年10月 8日 (火)

牛の動ける範囲は?(豊島岡女子学園中学 2019年 )

----------------------------------------------------

----------------------------------------------------

図のような AB、BC、CA の長さがそれぞれ20m、16m、12mで、

角Cの大きさが 90°である直角三角形ABCの3つの頂点の位置に

牛が1頭ずつロープでつながれています。

A、B、C につながれている ロープの長さは、

それぞれ 16m、12m、20m です。

このとき、牛が動くこ とのできる部分の面積は全部で何㎠ですか。

ただし、牛の大きさ、ロー プの太さは考えないものとし、

ロープはのびないものとします。

3051_2 

 

103

 

----------------------------------------------------

----------------------------------------------------

解法例

6085

図のように、

半円3つと真ん中の直角三角形の面積の合計になります。

 

3052_2

 

12×12×3.14×1/2+

16×16×3.14×1/2+

20×20×3.14×1/2+

12×2×16×2×1/2

=(12×6+16×8+20×10)×3.14+24×16

=400×3.14+384

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

=1640㎠

2019年9月 3日 (火)

ラグビーワールドカップの総試合数は?(城北中学 過年度改題)

----------------------------------------------------

----------------------------------------------------

日本でのラグビーワールドカップが始まります。

参加チームは全部で20チーム。

最初に5チームずつ4グループで総当たりの予選リーグを行い,

勝敗やトライ数などによって勝ち点を決め、各リーグ内で1位から5位までの順位を決めます。

次に,各リーグの上位2チームによる決勝トーナメントを行い,優勝チームを決めます。

この大会の総試合数は何試合になりますか?

3位決定戦もありますよ!

1226zu1

Rugby40781_1280

----------------------------------------------------

----------------------------------------------------

予選リーグは5チームから2チーム取り出す場合の数なので、

 5×4

ーーーーー =10試合

 2×1 

4グループなので、

10×4=40試合

決勝トーナメント進出チームは

2×4=8チーム

1チームが優勝するまでに7チームが負けるので7試合

3位決定戦が1試合あるので、7+1=8試合

全部で、40+8=48試合

Rugby1210840_1920

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2019年8月20日 (火)

色部分の面積は?(ラ・サール中学 2019年 )

----------------------------------------------------

----------------------------------------------------

図の三角形ABCで角Aは直角、辺ABの長さは24cm、

辺ACの長さは15cmです。

さらに、ADの長さが6cm、AEの長さが10cm、

DFは辺ACと平行とします。

(1)DFの長さを求めなさい。

(2)色部分の面積を求めなさい。

1281

6082_2

 

----------------------------------------------------

----------------------------------------------------

解法例

6085_2

 

1282

(1)

△EABと△FDBは相似で、

AB:DB=24:(24-6)=4:3

DF=10×3/4=7.5cm

(2)

△赤と△緑も相似で、

CE:DF=(15-10):7.5=2:3

△緑の底辺をDFとしたときの高さは、

6×3/5=3.6cm

求める面積=

(24×10÷2-18×7.5÷2)-7.5×3.6÷2

=(120-67.5)-13.5

=39㎠

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2019年8月12日 (月)

A、B、Cの濃度は何%?(雙葉中学  2019年 )

----------------------------------------------------

----------------------------------------------------

3つの容器A、B、Cに、濃度の異なる食塩水が 100gずつ入っています。

これらの食塩水に作業1をしました。

[作業1]

Aから 20g、Bから 30g、Cから 40gを取り出す。

次に、Aから取り出したものをBに、 Bから取り出したものをCに、

Cから取り出したものをAに入れて、それぞれよくかき混ぜる。

作業1の後のBの濃度は 13%でした。

作業1でできた食塩水に、作業2をしました。

[作業2]

Aから40g、Bから20g、Cから30gを取り出す。

次に、Aから取り出したものをCに、 Bから取り出したものAに、

Cから取り出したものをBに入れて、それぞれよくかき混ぜる。

作業2の後のAの濃度は 10.6%でした。

(1)作業1の後のAの濃度は何%でしたか。

 

(2)作業2の後、BとCの濃度は等しくなりました。

   このときのB、Cの濃度は何%ですか。

   ただし、作業1の後のCの濃度は、A、Bの濃度より高くなっていました。

 

(3) 最初、Cの濃度はAの濃度の3倍でした。

   最初のA、B、Cの濃度はそれぞれ何%でしたか。

Sst056s

----------------------------------------------------

----------------------------------------------------

解法例

(1)1回目でAは、100g-20g+40g=120gになり、

2回目で40g取り出したとき、120-40=80gになっています。

そこに、濃度13%のB20gが入り濃度が10.6%になるので、

てんびん図は下のようになります。

 

3111

重さの比はA:B=80:20=4:1

てんびんの長さは逆比になり、1:4

したがって作業1後のAの濃度は、

10.6-(13-10.6)÷4=10%

(2)てんびん図で表すと、

下の図のように、BとCの濃度、□%は等しくなります。

3112

したがって、

10+(C-10)×3/5=13+(C-13)×3/10

100+(C-10)×6=130+(C-13)×3

6×C+40=3×C+91

3×C=51

C=17%

□=13+(17-13)×3/10=14.2%

(3)作業1のAをてんびん図で表すと下のようになります。

3113

最初のAの濃度を◎%とすると、

◎+(3×◎-◎)1/3=10 より、

◎+(2×◎)/3=10

(5×◎)/3=10

◎=6%=A

C=6×3=18%

3114

B=13+(13-6)×2/7=15%

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2019年8月 5日 (月)

黄色部分の面積は?(早稲田中学 2019年 )

----------------------------------------------------

----------------------------------------------------

図の黄色部分は、

台形から半径が同じおうぎ形3つを取り除いたものです。

黄色部分の面積は何㎠ですか。

2261

6082

 

----------------------------------------------------

----------------------------------------------------

解法例

6085

2262

△AEFと△EBHは合同なので、

AF=8÷2=4cm です。

△AEGは二等辺三角形なので、

∠AEF=∠AGF より、

△AEFと△AGFは合同になります。

AG=GD、AF=GI=4cm より、

△AGFと△GDIも合同になり、

∠AGF+∠DGI=90°

∠FGI=90°より、

AGDは直線になります。

ID=FG=3cm=EF=BH より、

BD=12cm

3つのおうぎ形の中心角の合計は270°

求める面積は、

(6+12)×8÷2-5×5×3.14×270/360

=72-58.87.5

=13.125㎠

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2019年7月15日 (月)

長さと面積は?(武蔵中学 2019年 )

----------------------------------------------------

----------------------------------------------------

下の図で、四角形ABCDは長方形で、

AE=6cm、ED=8cm、DG:GC=2:5、

∠DEH=∠GFC、

三角形GFCの面積は10㎠です。

次の問いに答えなさい。

2181

(1)CFは何cmですか?

(2)ABは何cmですか?

(3)三角形BFHの面積は何㎠ですか?

----------------------------------------------------

----------------------------------------------------

解法例

2182

(1)

△GFCと△FEPは相似で、相似比は5:7より、

(⑤+⑦)=⑫が8cmなので、

CF=⑤=8×5/12=10/3cm

(2)

10/3×CG×1/2=10㎠なので、

CG=10÷5/3=6cm

DG=6×2/5=12/5cm

AB=6+12/5=42/5cm

(3)

△DEHと△BFHは相似で、相似比は

8:(14-10/3)=8:32/3=24:32=3:4

△BFHの面積=32/3×42/5×4/7×1/2

=32/3×12/5

=128/5㎠

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2019年7月 8日 (月)

ゲームをしたのは何回?(今年 2019年 桜蔭 中学)

----------------------------------------------------

----------------------------------------------------

3人の中から1人の勝者が決まるゲームのトーナ メントを考えます。

ゲームは必ず3人で行います。

このトーナメントに参加する子どもたちに1から 順に番号をふります。

番号の小さい順に3人ずつ 組み、 1回戦を行います。

3人の組にならない子どもは2人以下とし、そのまま2回戦に進みます。

2回戦以降も同じように組を作ってゲームを行います。

例えば、1番から 11番の参加者 11人でトーナメントをするとき、

図1のように1回戦はa、b、cの3回ゲームを行い、

10 番と11番の子どもはそのまま準決勝に進みます。

そのあと d、eの2回ゲームを行うと 優勝者が1人決まります。

図1

2061

(1)1番から81番の参加者 81人で1回戦を図2のように行うと、

優勝者が1人決まるまでに、合計何回のゲームが行われますか?

図2

2062

 

(2) 1番から235番の参加者235人でトーナメントを行うと、

優勝者が1人決まるまでに 合計何回のゲームが行われますか?

(3)優勝者が1人決まるまでに合計 24 回ゲームが行われたとき、

トーナメントの決勝、準決勝は 図3のようになりました。

このときのトーナメントの参加者は何人ですか?

図3

2063

----------------------------------------------------

----------------------------------------------------

解法例

106

 

(1)

81÷3=27

27÷3=9

9÷3=3

3÷3=1

27+9+3+1=40回

(2)

235÷3=78・・・・・1

(78+1)÷3=26・・・・・1

(26+1)÷3=9

9÷3=3

3÷3=1

78+26+9+3+1=117回

(3)

逆に考えていきます。

(2+1)÷3=1

7÷3=2・・・・・1

この7が1+6か2+5なのか調べます。

1+6の場合、

(6+1)÷3=2・・・・・1

その前は、

(   )÷3=6・・・・・1 なので、

(  )=19

19=18+1 か 17+2 となって、

いずれの場合も24ゲームを上回ってしまい不適当、

したがって、

(5+2)÷3=2・・・・・1 なので、

その前は、

(  )÷3=5・・・・・2 より

(  )=17

17=16+1 か 15+2 ですが、

24ゲームになるのは、16+1なので、

(16+1)÷3=5・・・・・2

その前は、

(  )÷3=16・・・・・1 より、

(  )=49人

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2019年6月30日 (日)

切断面の形は?(開成中学 2019年)

----------------------------------------------------

----------------------------------------------------

次の図のような直方体 ABCD-EFGH があります。

また、辺 CD、EF、GC 上にそれぞれ点 P、Q、R があり、

DP=8cm、PC=12cm、EQ=4cm、CR=9cmが成り立っています。

2021

 

 

3点P、Q、R を通る平面でこの直方体を切断し、

切断したときにできる切り口の図形をXとします。

図形 X を前から見ると(面 ABFE に垂直な方向から見ると)、

面積が228㎠の図形に見えます。

図形X を上から見ると(面 ABCD に垂直な方向から見ると)、

面積が 266㎠の図形に見えます。

2022

 

 

このとき、次の問いに答えなさい。

(1) 図形 X は何角形ですか。

(2) 直方体の高さ(辺 AE の長さ)は何cm ですか。

(3) 直方体の奥行き(辺 AD の長さ)は何cm ですか。

----------------------------------------------------

----------------------------------------------------

解法例

106

(1)切り口は図のような六角形です。

2023

(2)前から見ると下の図のように見えます。

2027

TQとPRは平行なので、

△TEQと△RCPは相似になり、

TE=4×3/4=3cm

六角形ATQFRP=228㎠なので、

AE=□cmとすると、

20×□-(4×3÷2+12×9÷2)=228

20×□-60=228

20×□=288

AE=□=14.4cm

(3)下の図のように、直方体の上に三角すいを考えると

2025

△TEQと△ODPは相似なので、

OD=8×3/4=6cm

△ODSと△TASも相似なので、

OD:TA=6:(14.4-3)=6:11.4=10:19より、

DS:SA=10:19

2026

上から見ると、△緑どうしも相似になるので、

DP:FQ=8:16=1:2より、

DS:BU=10:20

20×(⑩+⑲)-(8×⑩÷2+16×⑳÷2)=266

580まる-200まる=266

380まる=266

①=0.7

AD=29まる=0.7×29=20.3cm

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2019年6月20日 (木)

長さと表面積は?(神戸女学院中学部 2019年 )

----------------------------------------------------

----------------------------------------------------

図1のような直方体を上下はそのままで4個はり合わせて、

図2のような立体を作ります。

図1の直方体4個分の表面積の和と図2の立体の表面積の比は

5:4となりました。

図1

1301

図2

1302

 

 

(1)「あ」の長さは何cmですか。

(2)図2の立体を2個作ってぴったり重ね、

上の立体を点Pを中心に45°回転させて、図3のような立 体を作ります。

このとき、図3の立体の表面積を求めなさい。

図3

1303

 

----------------------------------------------------

----------------------------------------------------

解法例

109

(1)図1の立体の表面積は、

3×6×2+3×あ×2+あ×6×2

=18×あ+36

その4個分は、

72×あ+144

図2の立体は、

3×あ×8=24×あ だけ表面積が少なくなっているので、

(72×あ+144):(48×あ+144)=5:4

4×(72×あ+144)=5×(48×あ+144)

288×あ+576=240×あ+720

48×あ=144

あ=3cm

(2)

1304

.図のように上下の立体が重なっている部分の面積は、

3×3÷2×2=.9㎠

この重なった部分は8個あるので、

9×8=72㎠

図2の立体2つ分の表面積は、

2×(48×3+144)=576㎠

図3の立体の表面積は

576-72=504㎠

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

より以前の記事一覧

スポンサードリンク

2019年10月
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31    

不思議な休憩室