目次

« 2018年11月 | トップページ | 2019年1月 »

2018年12月

2018年12月24日 (月)

列は全部で何通り?(今年 2018年 麻布中学)

----------------------------------------------------

2つの記号〇、×を並べてできる列のうち、

次の条件にあてはまるものを考 えます。

(条件) ○が3つ以上連続して並ぶことはない。

Apf0107s

例えば,、○○×○○はこの条件にあてはまりますが、

○×○○○××は条件にあてはまりません。

このとき、次の問いに答えなさい。

(1)〇、×を合わせて14個並べるとき、

  ×の個数が最も少なくなる列を1つ書き なさい。

(2)〇、×を合わせて13個並べるとき、

  ×の個数が最も少なくなる列は全部で何通り考えられますか。

(3)〇、×を合わせて12個並べるとき、

  ×の個数が最も少なくなる列は全部で何通り考えられますか。

----------------------------------------------------

----------------------------------------------------

(1)

〇〇×〇〇×〇〇×〇〇×〇〇

(2)

〇〇×〇〇×〇〇×〇〇×

一番右の×を左にずらすと、

〇〇×〇〇×〇〇××

右から2番目の×を左にずらすと、

〇〇×〇〇×××

右から3番目の×を左にずらすと、

〇〇××××

一番左の×を左にずらすと、

××××

以上の5通り

(3)

〇〇×〇〇×〇〇×〇〇×・・・・・①

(2)と同様に右から順番に×をずらしていきます。

〇〇×〇〇×〇〇××〇・・・・・②

〇〇×〇〇×〇〇××〇・・・・・③

〇〇×〇〇×××〇・・・・・④

〇〇×〇〇×××〇・・・・・⑤

〇〇××××〇・・・・・⑥

〇〇××××〇・・・・・⑦

××××〇・・・・・⑧

××××〇・・・・・⑨

右側が×〇になっている②の変化形が考えられます。

〇〇×〇〇×××〇・・・・・⑩

〇〇××××〇・・・・・⑪

××××〇・・・・・⑫

左側が〇×になっている⑧の変化形が考えられます。

××××〇・・・・・⑬

××××〇・・・・・⑭

××××〇・・・・・⑭’これは⑫と同じなので不可

両側が〇〇×・・・・・×〇になっている

③~⑦の中6つの形でないのが、〇××〇の対象形、

〇〇×〇×××〇・・・・・⑮

この15通りです。

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2018年12月22日 (土)

面積は?(今年、2018年 桜蔭中学)

----------------------------------------------------

半径が3cmの円Aと、1辺の長さが6cmの正方形Bを用いてできる

次の3つの図形をA+A、A+B、B+Bと呼ぶことにします。

261_2

このとき、次の問いに答えなさい。

(1)A+A、A+B、B+Bの面積はそれぞれ何㎠ですか。

(2)同じように、AとBを合わせて10個用いて、

  下のような図形を作ります


  両端にAを使うとき、 Bをできるだけ少なく使って面積が250㎠ 以上の

  図形を作るには、Bを何個使いますか。

  また、 作った図形の面積は何㎠ですか。


263

----------------------------------------------------

----------------------------------------------------

(1)

2つの図形の面積の和から重なった部分を引きます。

262

緑部分

=3×3-(3×3-3×3×3.14×1/4)×2

=9-(9-7.065)×2

=5.13㎠

円周率が3.14の場合、

木の葉形の面積が正方形の0.57倍になることを知っていれば、

3×3×0.57=5.13㎠

赤部分

=3×3×3.14×1/4

=7.065

青部分

=3×3

=9㎠

A+A

=3×3×3.14×2-5.13

=51.39㎠

A+B

=(3×3×3.14+36)-7.065

=57.195㎠

B+B

=36×2-9

=63㎠

(2)

10個全部Aの場合の面積

=28.26×10-5.13×9

=236.43

したがって、250-236.43=13.57㎠以上増やします。

Bを1つ増やすと、

36-28.26=7.74㎠面積が増えますが、

重なる部分も、(赤-緑)×2=(7.065-5.13)×2=3.87㎠増え、

実際に増える面積は、7.74-3.87=3.87㎠です。

もう1つBを増やしても、両サイドのA+Bは変わらないので、

B+Bなら、9-5.13=3.87㎠増え、

A+B+A+B+Aの並びでも3.87㎠増えることになります。

つまり、Bを1つ増やすごとに3.87㎠増えるので、

13.57÷3.87=3.5・・・ より、

Bは4個使い、

面積は、

236.43+3.87×4=251.91㎠

----------------------------------------------------

----------------------------------------------------

↓こちらファミリーページにもどうぞ!

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

算数、解法のリンク集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

スマートホンアプリ「立方体の切り口はどんな形?」(ネット環境でのFlashアニメーション)

中学受験算数解法1000→「イメージでわかる中学受験算数」

2018年12月21日 (金)

なぞり方は何通り?(2019年 海陽中等教育学校(特別給費))

----------------------------------------------------

点線で辺がかかれた正方形について、

正方形の中に書かれた数字の本数だけ辺を線でなぞります。

たとえば・・・

12181

などのようになります。

(1)

12182

となっているとき、辺のなぞり方は6通りあります。

6通りすべて書いてください。

(2)

12184_2

上の図において、辺のなぞり方がちょうど1通りとな るような

(あ)と(い)の組合せをすべてあげてください。

たとえば(あ)が3で(い)が2のときは(3、2)のように答えること。

(3)

12185

 となっているとき、辺のなぞり方は何通りありますか。

(4)

12187

となっているとき、辺のなぞり方は何通りありますか。

(5)

下の図において、(う)と(え)と(お)になぞることのできる数の組を入れます。

このような数の組をすべて考えると、

辺のなぞり方は全部で何通りありますか。

12189

----------------------------------------------------

----------------------------------------------------

解法例

(1)

12183

(2)

(0、0)、(3、0)、(0、3)、(1、4)、(4、1)、(4、4)

(3)

12186_2

左側の2本が中央の線をなぞらない3通りでは、

右側はそれぞれ3通りのなぞり方があるので、

3×3=9通り

左側の2本が中央の線をなぞる3通りでは、

右側の残る1本のなぞり方は図のように3通りなので、

3×3=9通り

全部で、9×2=18通り

(4)

12188

3の正方形は図のように3通りのなぞり方があり、

一番左の場合、それに応じた2の正方形のなぞり方で、

1の正方形のなぞり方が決まり、

真ん中と、右の場合は1の正方形のなぞり方は決まっているので、

2の正方形のなぞり方は2通りずつ、

したがって、全部で9通りのなぞり方があります。

(5)

121810

各辺はなぞるか、なぞらないかの2通りなので、

2×2××××××××

=1024通り

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ!  ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2018年12月13日 (木)

三角形ABEの面積は?(今年 2018年 志学館中等部)

----------------------------------------------------

下の図で、四角形ABCDは辺ADと辺BCが平行 な台形です。

辺BCの長さは辺ADの長さの2倍で、

CEの長さはAEの長さの2倍です。

台形ABCDの 面積が72㎠のとき、

三角形ABEの面積は何㎠で すか。

12131

107

----------------------------------------------------

----------------------------------------------------

解法例

109

△緑と△赤は高さが同じなので、

底辺の長さ比が、そのまま面積比になります。

12132

△緑:△赤=1:2

△黄と△水色も底辺比が1:2なので、

面積比も1:2

12133

△ABEの面積=72×2/3×1/3=16㎠

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ!  ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

2018年12月 4日 (火)

長さ比、面積比は?(今年 2018年 吉祥女子中学)

----------------------------------------------------

図の四角柱は、底面が1辺5cmのひし形で、高さは5cmです。

点Mは 辺CG を二等分する点、

点Pは三角形AFHと直線CEの交わる点、

点Q は三角形AFH と直線MEの交わる点、

点Rは3点A、P、Qを通る直線と直線FHの交わる点です。

FHの長さが6cmで、ひし形ABCDの面積が24㎠のとき、

後の問いに答えなさい。

12041

 

(1) ACの長さは何cmですか。

(2) FR:RH をもっとも簡単な整数の比で答えなさい。

(3) AP:PR をもっとも簡単な整数の比で答えなさい。

(4) AQ:QR をもっとも簡単な整数の比で答えなさい。

(5) AP:PQ:QR をもっとも簡単な整数の比で答えなさい。

(6) 三角形EPQ の面積は何㎠ですか。

Santa3

----------------------------------------------------

----------------------------------------------------

解法のヒント

Honeycam_20181204_081552

6082

----------------------------------------------------

----------------------------------------------------

解法例

(1)ひし形の面積は、対角線×対角線÷2なので、

AC×6÷2=24 より、

AC=24×2÷6=8cm

(2)PもQも図のように対角線ACを含む

平面AEGC上にあるので、Rも同一平面上にあります。

12042

Rは対角線FHの中点になり、

FR:RH=1:1

(3)BFとDHが重なる方向から見ると、

12043

△AEPと△SRPは相似で相似比は2:1なので、

AP:PR=2:1

(4)TはSRの中点なので、

△AEQと△TRQは相似で相似比は4:1

AQ:QR=4:1

(5)AP:PRとAQ:QRの比の合計をそろえると、

 AP:PR=2:1=10:5

AQ:QR=4:1=12:3 より、

PQ=5-3=2

AP:PQ:QR=10:2:3

(6)

△EAPと△EPQと△EQRの面積比は10:2:3

△EARの面積=5×(8÷2)÷2=10㎠ より、

△EPQの面積=10×2/15=4/3㎠

6083

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ!  ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

« 2018年11月 | トップページ | 2019年1月 »

スポンサードリンク

2022年8月
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31      

不思議な休憩室