目次

« 目の出方は何通り?(今年 2018年 雙葉中学) | トップページ | ゴールしたランナーの順位は?(今年 2018年 早稲田中学) »

2018年2月15日 (木)

列は全部で何通り?(今年 2018年 麻布中学)

----------------------------------------------------

2つの記号〇、×を並べてできる列のうち、

次の条件にあてはまるものを考 えます。

(条件) ○が3つ以上連続して並ぶことはない。

Apf0107s

例えば,、○○×○○はこの条件にあてはまりますが、

○×○○○××は条件にあてはまりません。

このとき、次の問いに答えなさい。

(1)〇、×を合わせて14個並べるとき、

  ×の個数が最も少なくなる列を1つ書き なさい。

(2)〇、×を合わせて13個並べるとき、

  ×の個数が最も少なくなる列は全部で何通り考えられますか。

(3)〇、×を合わせて12個並べるとき、

  ×の個数が最も少なくなる列は全部で何通り考えられますか。

----------------------------------------------------

----------------------------------------------------

(1)

〇〇×〇〇×〇〇×〇〇×〇〇

(2)

〇〇×〇〇×〇〇×〇〇×

一番右の×を左にずらすと、

〇〇×〇〇×〇〇××

右から2番目の×を左にずらすと、

〇〇×〇〇×××

右から3番目の×を左にずらすと、

〇〇××××

一番左の×を左にずらすと、

××××

以上の5通り

(3)

〇〇×〇〇×〇〇×〇〇×・・・・・①

(2)と同様に右から順番に×をずらしていきます。

〇〇×〇〇×〇〇××〇・・・・・②

〇〇×〇〇×〇〇××〇・・・・・③

〇〇×〇〇×××〇・・・・・④

〇〇×〇〇×××〇・・・・・⑤

〇〇××××〇・・・・・⑥

〇〇××××〇・・・・・⑦

××××〇・・・・・⑧

××××〇・・・・・⑨

右側が×〇になっている②の変化形が考えられます。

〇〇×〇〇×××〇・・・・・⑩

〇〇××××〇・・・・・⑪

××××〇・・・・・⑫

左側が〇×になっている⑧の変化形が考えられます。

××××〇・・・・・⑬

××××〇・・・・・⑭

××××〇・・・・・⑭’これは⑫と同じなので不可

両側が〇〇×・・・・・×〇になっている

③~⑦の中6つの形でないのが、〇××〇の対象形、

〇〇×〇×××〇・・・・・⑮

この15通りです。

----------------------------------------------------

----------------------------------------------------

↓こちらファミリーページにもどうぞ!

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

算数、解法のリンク集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

スマートホンアプリ「立方体の切り口はどんな形?」(ネット環境でのFlashアニメーション)

中学受験算数解法1000→「イメージでわかる中学受験算数」

« 目の出方は何通り?(今年 2018年 雙葉中学) | トップページ | ゴールしたランナーの順位は?(今年 2018年 早稲田中学) »

日記・コラム・つぶやき」カテゴリの記事

中学受験」カテゴリの記事

算数」カテゴリの記事

クイズ」カテゴリの記事

パズル」カテゴリの記事

場合の数」カテゴリの記事

条件整理と推理」カテゴリの記事

コメント

この記事へのコメントは終了しました。

トラックバック


この記事へのトラックバック一覧です: 列は全部で何通り?(今年 2018年 麻布中学):

« 目の出方は何通り?(今年 2018年 雙葉中学) | トップページ | ゴールしたランナーの順位は?(今年 2018年 早稲田中学) »

スポンサードリンク

2022年8月
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31      

不思議な休憩室