目次

« 正六角形の性質(中央大学横浜山手女子中学 2010年) | トップページ | 交わる対角線は何通り?(同志社中学 2010年) »

2016年6月30日 (木)

点の移動と旅人算(2016年 筑波大学附属駒場中学)

----------------------------------------------------

6301

上の図のように、点Oを中心とする円と、その円周上に点A,Bあり、

OAとOBは垂直です。

3点P,Q,Rは、次のように円周上を動きます。

PはAを出発して、反時計回りに動き、6分で円を1周します。

QはBを出発して、反時計回りに動き、6分で円を2周します。

RはAを出発して、時計回りに動き、6分で円を3周します。

P,Q,Rは同時に動き始め、それぞれ一定の速さで円周上を動き、

6分後に3点とも止まります。 

PとQ、QとR、RとPをまっすぐな線で結んで作った図形PQRについて、

次の問に答えなさい。 

(1)


P,Q,Rのうちの2点が重なり、

図形PQRが三角形
ならないことが何度もあります。

初めて三角形にならないのは
動き始めてから何秒後ですか?

また、2度目、3度目に三角形
にならないのは、

動き始めてから、それぞれ何秒後ですか?
 
 
(2)

図形PQRが三角形で、その辺上に中心Oがあるのは、

動き
始めてから何秒後ですか?

考えられるものをすべて答えなさい。


(3)

図形PQRが正三角形になるのは、動き始めて何秒後ですか?

考えられるものをすべて答えなさい。


---------------------------------------------------

---------------------------------------------------

(1)P、Q、R の速さの比は、1:2:3
 
Pの分速を【1】としたとき、円の長さは、【1】×6=【6】です。
 
図形PQRが初めて三角形にならないのは、QとRが重なるときで
 
最初に、QとRは、【6】の3/4離れているので、2点が出会うのは、
 
【6】×3/4÷(【2】+【3】)=0.9分後=54秒後
 
です。
 
2度目に三角形にならないのは、PとRが重なるときで、
 
【6】÷(【1】+【3】)=1.5分後=90秒後
 
です。(PとRが90秒ごとに重なることがわかります)
 
3度目に三角形にならないのは、QがPに追いついたときか、
 
QとRが2度目に重なるときの、どちらかと考えられます。
 
QがPに追いつくのは、
 
【6】×3/4÷(【2】-【1】)=4.5分後
 
QとRが2度目に重なるのは、
 
0.9+【6】÷(【2】+【3】)=2.1分後
 
なので、
 
3度目に三角形にならないのは、126秒後です。
 
(QとRが1.2分=72秒ごとに重なることがわかります)
 
 
 
(2)図形PQRの辺上に点Oがあるとき、その辺の2点は
 
点Oをはさんで真反対側(【3】離れたところ)にあります。
 
点Pと点Qが【3】離れるのは、最初の位置で【1.5】離れているので、
 
(【3】-【1.5】)÷(【2】-【1】)=1.5分後=90秒後
 
です。(1)より、点Pと点Qが重なるのが4.5分後なので、
 
6分以内に、再び点Pと点Qが【3】離れた位置に来ることはありません
 
また、(1)より、QとRが1.2分=72秒ごと、PとRが90秒ごとに重なるので、
 
重なってから QとRが36秒後、PとRが45秒後に
 
【3】離れた位置になることがわかります。
 
点Pと点Rは、45秒後、135秒後、225秒後、315秒後です。
 
点Qと点Rは、18秒後、90秒後、162秒後、234秒後、306秒後です。
 
ただし、90秒後には三角形にならないので、答えは、
 
18秒後、45秒後、135秒後、162秒後、
 
225秒後、234秒後、306秒後、315秒後
 
です。
 
 
 
(3)正三角形PQRができるとき、3点は【2】ずつ離れた位置にいるので、
 
3点のうちの2点が【2】離れる時間を求め、
 
そのときに残りの1点が【2】離れている条件を満たすか調べます。
 
点Pと点Qが【2】離れる回数が少ないので、これを調べます。
 
最初に点Pと点Qは【1.5】離れているので、【2】になるのは、
 
(【2】-【1.5】)÷(【2】-【1】)=0.5分後
 
です。
 
2回目に【2】離れるのは、点Qが点Pに追いついていったときで
 
最初に【4.5】離れていると見なせるので、
 
(【4.5】-【2】)÷(【2】-【1】)=2.5分後
 
です。
 
3回目に【2】離れるのは、点Qが点Pを追い越して【2】離れたときで、
 
(【4.5】+【2】)÷(【2】-【1】)=6.5分後
 
なので、6分以上かかります。
 
よって、0.5分後と2.5分後の点Rの位置について調べてみると
 
0.5分後は、【3】×0.5=【1.5】
 
2.5分後は、【3】×2.5=【7.5】
 
の位置で、
 
1周【6】なので、2.5分後も点Aから【1.5】の位置とわかります。
 
0.5分後の3点の位置は、
 
点Pは点Aから【0.5】、点Qは点Bから【1】→点Aから【2.5】、
 
点Rは点Aから【1.5】
 
2.5分後の3点の位置は、
 
点Pは点Aから【2.5】、点Qは点Bから【5】→点Aから【0.5】、
 
点Rは点Aから【1.5】
 
なので、共に正三角形になります。(点Rだけ時計回りです)
 
よって、正三角形になるのは、30秒後と150秒後の2回です。
 

---------------------------------------------------

---------------------------------------------------

↓こちらファミリーページにもどうぞ!

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

受験算数、裏技WEB講座

1分で解ける算数

算数、解法のリンク集

図で解く算数

紙も鉛筆も使わないで解く算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

スマートホンアプリ「立方体の切り口はどんな形?」(ネット環境でのFlashアニメーション)

中学受験算数解法1000→「イメージでわかる中学受験算数」

« 正六角形の性質(中央大学横浜山手女子中学 2010年) | トップページ | 交わる対角線は何通り?(同志社中学 2010年) »

日記・コラム・つぶやき」カテゴリの記事

中学受験」カテゴリの記事

算数」カテゴリの記事

クイズ」カテゴリの記事

パズル」カテゴリの記事

旅人算」カテゴリの記事

速さ」カテゴリの記事

コメント

この記事へのコメントは終了しました。

トラックバック


この記事へのトラックバック一覧です: 点の移動と旅人算(2016年 筑波大学附属駒場中学):

« 正六角形の性質(中央大学横浜山手女子中学 2010年) | トップページ | 交わる対角線は何通り?(同志社中学 2010年) »

スポンサードリンク

2022年8月
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31      

不思議な休憩室