目次

« 川が流れる速さは?(慶應義塾湘南藤沢中等部 2007年) | トップページ | 接している面の面積の合計は?(法政大学中学 2014年) »

2015年9月 6日 (日)

とても面白い問題ですね!(2007年算数オリンピック、トライアルより)

1年生・2年生・3年生、各20人ずつ合計60人がまるく1つの輪になって手をつないでいます。この状態から1年生と2年生とでつないでいる手を離すと10個のグループになり、1年生と3年生とでつないでいる手を離すと8個のグループに分かれ、2年生と3年生とでつないでいる手を離すと6個のグループに分かれます。(1人でも1グループと数えます)
では同じ学年の生徒どうしでつないでいる手を離すと、いくつのグループに分かれますか?

Lpsa3103cs

----------------------------------------------------

----------------------------------------------------

----------------------------------------------------

----------------------------------------------------

全員がまるくなって手をつないでいるので、

1ヵ所手を離すとグループは1つ、

2ヵ所手を離すとグループは2つになります。

つまり、

手を離したところの数=グループの数

ということになります。

手をつないでいるのは、

異なる学年どうしの場合は、

1年生と2年生、

2年生と3年生、

3年生と1年生。

同じ学年どうしの場合は

1年生どうし、

2年生どうし、

3年生どうし、

のいずれかです。

60人が円になっているので手をつないでいるところも60ヵ所あり、

このうち、異なる学年どうし手をつないでいる部分は、

1年と2年が10ヵ所、

2年と3年が6ヵ所、

3年と1年が8ヶ所なので、

同じ学年どうしが手をつないでいるのは、

60-10-8-6=36ヵ所

以上から、同じ学年どうしがつないでいる手を離したとき、

できるグループ数は36となります。

---------------------------------------------------

----------------------------------------------------

---------------------------------------------------

↓こちらファミリーページにもどうぞ!

問 題+解法のセット集→「算数解き方ポータル」

ど う解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解 き絵さんの受験算数日記!

1分で解ける算数

入 試算数、過去問ツアー

図で解く算数

紙も鉛筆も使わないで 解く算数 

難問、奇 問、名作にチャレンジ!

通勤、 通学、待ち時間の脳活算数! 

にほんブログ村 受験ブログ 中学受験(指導・勉強

法)へ
にほんブログ村

スマートホンアプ リ「立方体の切り口はどんな形?」(ネット環境でのF lashアニメーション)

中学受験算数解法1000→「イメージでわかる中学受験算数」

« 川が流れる速さは?(慶應義塾湘南藤沢中等部 2007年) | トップページ | 接している面の面積の合計は?(法政大学中学 2014年) »

中学受験」カテゴリの記事

算数」カテゴリの記事

クイズ」カテゴリの記事

パズル」カテゴリの記事

条件整理と推理」カテゴリの記事

算数オリンピック」カテゴリの記事

コメント

コメントを書く

(ウェブ上には掲載しません)

トラックバック

« 川が流れる速さは?(慶應義塾湘南藤沢中等部 2007年) | トップページ | 接している面の面積の合計は?(法政大学中学 2014年) »

スポンサードリンク

2019年10月
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31    

不思議な休憩室