目次

« 出発してから何分後?(2015年 洗足学園中学) | トップページ | この立体の表面積は?(2015年 滝中学) »

2015年5月19日 (火)

作図していくと・・・(2006年算数オリンピック、ファイナル問題より)

下の図において、点Eは正方形ABCDの辺CDの上にある点です。また、三角形BEFは角BEF=90度の直角二等辺三角形で、辺BFと辺ADが交わっている点をGとします。 AG=5cm、GD=15 cm のとき、直角二等辺三角形BEFの面積を求めなさい。

1  

----------------------------------------------------

----------------------------------------------------

下図のように、

直角二等辺三角形BEFと合同な直角二等辺三角形FHBを書き、

正方形FHBEを作ります。

さらに、この正方形FHBEを

直角三角形EBCと、それと合同な三角形3個の計4個で囲んで、

正方形JKCIを作り、BAの延長が辺JIと交わる点をLとします。

2

ここで、JF=LI=BC=20 cm。

いま、LF=①とすると、JI=JF+LI-LF=40 cm-①

次に、三角形ABGと三角形LBFは相似なので、

LF:LB=AG:AB=5:20=1:4

これにより、LB=JK=④

JI=JKより、40cm-①=④ 

⑤=40cm → ①=8cm。

JK=KC=IC=JI=40cm-8cm=32 cm、

HK=BC=IE=JF=20 cmなので、

KB=EC=FI=JH=32cm-20cm=12 cm

以上から、

直角三角形BEF

=正方形FHBE÷2

=(正方形JKCI一直角三角形EBC×4)÷2

=(32×32-20×12÷2×4)÷2

=(1024 - 480)÷2=272c㎡

----------------------------------------------------

----------------------------------------------------

↓こちらファミリーページにもどうぞ!

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国150中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

分野別66項目へ

お解きさんの受験算数日記!

1分で解ける算数

イメージで見る算数!

« 出発してから何分後?(2015年 洗足学園中学) | トップページ | この立体の表面積は?(2015年 滝中学) »

日記・コラム・つぶやき」カテゴリの記事

中学受験」カテゴリの記事

算数」カテゴリの記事

平面図形」カテゴリの記事

クイズ」カテゴリの記事

パズル」カテゴリの記事

算数オリンピック」カテゴリの記事

コメント

コメントを書く

(ウェブ上には掲載しません)

トラックバック

« 出発してから何分後?(2015年 洗足学園中学) | トップページ | この立体の表面積は?(2015年 滝中学) »

スポンサードリンク

2019年8月
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

不思議な休憩室